
APPENDIX

The following Appendix sections are meant to add helpful
context to our submission. In App. A, we provide a more
formal definition of pre-grasps (see App. A.1), contrast
them against grasps (see App. A.2), and show how prior
dexterous, learning algorithms relied on pre-grasps for stable
performance (see App. A.3). App. B presents all the hyper-
parameters used in our task formulation (see App. B.1),
TCDM benchmark (see App. B.2), and PGDM learning
framework (see App. B.4). App. C provides a more thorough
breakdown of our experimental validation results (see Sec. V-
A). Finally, App. D gives more information about the baseline
implementations, and App. E discusses our hardware setup,
built using the Franka Panda and D’Manus [29] robots.

A. Pre-Grasps in Depth
In this appendix we give a more formal introduction to

pre-grasps (see App. A.1), and compare them to grasps (see
App. A.2), which the reader may be more familiar with.
Finally, we demonstrate that pre-grasps are often leveraged
as an unstated assumption in prior work (see App. A.3).

1) What are Pre-Grasps?
The pose of the hand (position, orientation, and joint artic-

ulation) just before the initiation of a hand-object interaction
is called a “pre-grasp.” It places the hand in a favourable
region of the state space relative to the object, so that the
intermittent contact behaviors of dexterous manipulation can
evolve stably. Note that we did not develop this concept: it
is a classical robotics construct [17], [18], [19].

We now outline a few key properties of pre-grasp states
(shown in Fig. 6) – (1) First, a pre-grasp positions the robot
close to the target object, and orients the robot’s palm and
wrist joints towards the object. This proximity ensures that
pre-grasps can easily evolve into a stable grasp, without
requiring the robot to explore the whole state space. (2) In
addition, pre-grasp finger poses encode valuable information
about functional parts of an object, without requiring the robot
to reason about it explicitly. For example, a pre-grasp that
curls a robot’s fingers around a mug handle, offers a crucial
signal for the robot to interact with the mug by grasping
the handle. This property also implies that there might be
multiple pre-grasps possible for every object (corresponding
to different functions). (3) Finally, pre-grasp states incentivize
favorable contacts (e.g. interaction with tool handles) and
avoid dangerous contacts with the object (e.g. knife edge)
and/or any other parts of the scene (e.g. pressing into the
table). This is crucial because dexterous manipulation is full
of contacts that are difficult to effectively model, predict, and
reason about. A good pre-grasp provides a favourable start and
strong momentum for learning the downstream manipulation
behavior.

2) Grasp vs Pre-Grasp
Traditionally, successfully grasping an object is considered

to be the most important event for dexterous manipulation.
Indeed, dexterous manipulation has often been defined as a
series of grasps in sequential order [2], [5], [6]. The first
grasp in the sequence has been extensively analyzed both for

grasp synthesis [2] and for object stability [5], [6]. Therefore,
it begs an important question: are pre-grasps or grasps the
key states for dexterous manipulation? We believe that pre-
grasps are a stronger and more practical primitive to leverage
when compared to grasps. They are stronger because if pre-
grasps can simplify policy learning, then grasps should as
well. However, the reverse is not true, since grasping comes
after pre-grasps. Furthermore, they are more practical, since
reaching a stable grasp is significantly harder than reaching
a pre-grasp. After all, grasps are based on precise geometric
and surface properties (friction, softness, etc) that cannot be
accurately detected with modern position and force sensing
technologies. Furthermore, grasps have extremely narrow
stability margins that can be violated by small deviations.

Our key insight is that a grasp is a “post-condition”
(effect) of gaining control of the object. However, to make
dexterous manipulation policy learning feasible, we need a
“pre-condition” (which is easier to reach than “post-condition”)
that can initialize the manipulation behavior in a healthy
manner. We hypothesize that pre-grasps (i.e. hand pose before
the onset of object interaction) are the key pre-condition, and
arriving/initializing at a pre-grasp can significantly lower the
complexity in synthesizing dexterous manipulation behaviors.
Unlike grasps, pre-grasps– (1) are devoid of precise hand-
object contacts and therefore doesn’t have extreme sensing
requirements; (2) are easy to achieve and satisfy as most
robots have good joint position control; (3) have a wide
stability basin such that various contact transitions needed
for dexterous manipulation can evolve within its boundaries.

3) Pre-Grasps in Past Learning Work
We note that many dexterous manipulation papers in the

last decade used pre-grasps to some degree without explicit
mention. For example, the Pen-Task in DAPG’s ADROIT
suite [23] required pre-grasp initialization to work. Similarly,
the OpenAI Rubik’s cube experiment [30] assumed a stable
in-hand (i.e. pre-grasp) initialization.

Two recent dexterous manipulation papers [25], [26]
considered the in-hand object rotation task. For most of their
experiments they start at a pre-grasp pose (object laid flat
on the palm). As a test, we experimentally demonstrate for
Huang et. al [26] this choice is crucial – removing the pre-
grasp initialization causes learning to fail entirely. For Chen
et. al. [25] this choice is explicitly addressed in the paper –
the only way they were able to avoid starting at pre-grasp
was by using a gravity curriculum. Such a procedure would
be impossible in the real world, where gravity is a fixed
constant.

B. Hyper-Parameters
In this appendix we list the hyper-parameters for our task

formulation (see App. B.1), TCDM benchmark (see App. B.2),
simulated environments (see App. B.3), and PGDM learning
framework (see App. B.1).

1) Task Formulation Hyper-Parameters
As discussed in Sec. III-A, our task formulation auto-

matically parameterizes task MDPs using exemplar object
trajectories. This is accomplished (in part) by using a



Task Formulation Parameters

Parameter Value

�1 10
�2 2.5
↵ 50
� 5
⇣ 0.02
� (term) 0.25
– –
– –
– –
– –
– –
– –

PGDM Framework Parameters

Parameter Value

� (discount) 0.95
� (GAE) 0.95
Learning Rate 1e-5
Value Fn. Coef. 0.5
Entropy Coef. 0.001
PPO Clip 0.2
Steps per Iter 4096
Mini-Batch Size 256
Epochs 5
Policy Net (Mean) MLP([256, 128]); TanH + Ortho. Init.
Policy Net (�) Param(size=adim, value=exp(-1.6))
Value Fn. Net MLP([256, 128]); TanH + Ortho. Init.

TABLE III: Experimental hyper-parameters for our task creation and policy learning stacks. Note that no per-task tuning was
allowed at all for any of the listed parameters!

simple reward function and termination function. The hyper-
parameters for these functions are listed in Table III (left).

2) TCDM Tasks
As discussed in Sec. IV-A, we leverage our task formulation

to automatically generate a benchmark – TCDM. Recall that
each task in TCDM is parameterized using an exemplar
object trajectory (more info in Sec. III-A and App. B.1). The
trajectories for these tasks were mined from three sources
listed below:

• Human Motion Capture (GRAB [36]): The GRAB
data-set contains motion capture sequences of human-
object interactions. Specifically, each recording in GRAB
consists of a human performing various skills with a
collection of common objects (e.g. use hammer, pass
flute, lift duck, etc.) from the ContactDB dataset [21].
The recordings contain the target object’s pose (i.e.
position and orientation), and a mesh reconstruction
of the articulated hand at each time-step. In other words,

GRAB contains paired exemplar object trajectories (X
from Sec. III-A) and hand pose trajectories H =
[h0, . . . , hn]. Note that these hand trajectories are not
used in our method, but are required for the baselines.
We created 40 tasks using trajectories from GRAB.

• Expert Policies (ADROIT [23]): Another source of
object trajectories are expert policies, acquired either by
learning/writing a controller or through human expert
tele-operation. Since expert policies produce object be-
haviors worth imitating, one can simply extract the object
trajectory from successful policy roll-outs. Specifically,
we take expert trajectories from the ADROIT benchmark
suite, which were collected by tele-operating a simulated
ShadowHand. ADROIT object trajectories (no actions!)
were taken to parameterize 3 tasks.

• Human Animators: Finally, we showcase that object
trajectories for our method need not come from data.
Instead, suitable (i.e. smooth) object trajectories can be

Fig. 6: Examples of pre-grasps used in our experiments. Note how they (1) place the hand in proximity to the target object
and (2) and pose the fingers around functional parts of the object (e.g. hammer’s handle). However, pre-grasps are not stable
grasps. In fact, the hand does not make contact with the objects at all!



scripted by human animators. We manually animated
7 object trajectories and used them to create the final
tasks.

In addition pre-grasps for each task are mined from the
following sources:

• MoCap: We extract human hand poses from the GRAB
MoCap dataset (discussed above) and transfer them to
the robot using an inverse kinematics procedure (solve
for joints that achieve human finger-tip positions). This
allows us to easily create pre-grasps for trajectories
sourced from MoCap datasets.

• Tele-Op: Expert Tele-Op trajectories provide a natural
source for pre-grasps. We extract pre-grasp states from
the dataset provided by the DAPG paper [23].

• Human Labels: These pre-grasps are manually labeled
by a human annotator. This is accomplished using the
MuJoCo visualizer UI.

• Learned Model: We feed the object mesh and pose
into the GrabNet model [36], which in turn predicts a
human grasp pose (w/ MANO parameters). This pose
is transferred to the robot using inverse kinematics in
the same fashion as the MoCap pre-grasps.

Altogether, we created 50 unique tasks using these tra-
jectory sources, and bundled them together into the TCDM
benchmark. However, the the baselines required extra supervi-
sion (i.e. full hand reconstruction) that was only present in the
GRAB data-set. In addition, 10 of the tasks constructed using
GRAB data focused on “simple” lifting behaviors that (while
good for debugging) were not representative of free-form
object motion. Thus, we created the TCDM-30 benchmark
for our baseline study that (as the name suggests) consisted of
the remaining 30 TCDM tasks parameterized w/ GRAB data.
Table IV lists all of the tasks, alongside the object trajectory
source, pre-grasp sources, and PGDM performance. Please
refer to our code release for benchmark membership (i.e. in
TCDM-30 or not) for each task.

3) Implementing TCDM w/ a Physics Simulator
Prior sections (Sec. III-A, IV-A and App. B.1, B.4) have

discussed how TCDM tasks are formulated, the hyper-
parameters used, the trajectories that parameterize them, and
the design decisions made while building them. In contrast,
this section will describe how TCDM tasks are actually
implemented.

Our investigation leveraged the MuJoCo [43] physics
simulator in place of a real robotics setup. Simulation was
used since dexterous hardware is hard to acquire, and because
real setups are less reproducible. For each task, we built
a simulated scene that contains a table, a single robot,
and a single target object. Object matching was done to
explicitly pair exemplar trajectories with the intended object
(e.g. drinking trajectory is matched w/ mug), while the robot
matching was done arbitrarily. We consider 3 robot morpholo-
gies – ShadowHand [16], D’Hand [27], and D’Manus [29] –
alongside 34 objects from the ContactDB [21] and YCB [22]
object sets. Note that the simulated object properties are
carefully defined to avoid inconsistencies. For the ContactDB

objects, we infer object properties (e.g. mass and moments
of inertia) by adopting common properties from 3D printed
objects (ContactDB objects are printed). This was achieved
by setting the object density to 1.25 g/cm3 (density of PLA)
and then using MuJoCo to solve necessary object properties
from the convex decomposition of the objects. The convex
decomposition was solved using VHACD [49]. The YCB
object properties are defined by measuring real world versions
of the objects.

We’ve now described the simulated setup and MDP
formulation for every TCDM task. These are implemented
together into a single Gym environment [50]. As a result,
our tasks can be easily “plugged” into other RL and control
code-bases. We now describe the observation space and action
space used in our environment:

• Observation Space: We use a simple state space
consisting of the robot joints, robot fingertip locations,
and the object pose. In addition, we use positional
encoding [51] to mark the current simulation time-step
and add that to the end of the state vector. This is needed
to handle time varying goal behaviors (see Sec. III-A).

• Action Space: Our action space is joint position control,
achieved using a simple low level PD torque controller.
The first six joints handle wrist position/orientation, and
the remaining joints control the robot fingers themselves.
The simulated gains are tuned to be realistic, and gravity
compensation is applied (by modifying applied torques).
These assumptions are all consistent with real dexterous
hand hardware.

Please check our website for the code and fur-
ther documentation of TCDM tasks and environments:
https://pregrasps.github.io/.

4) Learning Behaviors w/ PGDM
As discussed in Sec. IV-B, our PGDM framework uses pre-

grasp states as exploration primitives to speed up dexterous
behavior learning. It operates in two phases: (1) the robot
hand is brought to a pre-grasp state using a heuristic trajectory
optimization planner; and (2) the behavior policy is learned
by optimizing task reward (e.g. from TCDM) using a RL
algorithm. Both ingredients are described in detail below.
Furthermore, PGDM hyper-parameters are listed in Table. III
(right), and psuedo-code is shown in Alg. 1.

a) Reaching Pre-Grasp States:
After the task scene is reset (e.g. object brought to reset

position), PGDM’s first stage begins. Specifically, the robot
hand is brought to an appropriate pre-grasp position for the
task and target object. Note that the pre-grasp state is not
predicted, instead it is manually annotated (per-task) in an
offline dataset. A CEM trajectory planner [44] solves for
actions that bring the robot to the pre-grasp, without disturbing
the object. This is done in a geometry-free way (i.e. w/out any
object mesh knowledge). First, the hand is brought far above
(e.g. 30cm) the target object. Second, the thumb joint begins
moving towards its pre-grasp configuration. And finally, the
rest of the hand is brought to the pre-grasp state. While a
simple heuristic, this motion plan successfully brings the
robot to pre-grasps for all of the 50 diverse tasks (and 34

https://pregrasps.github.io/


objects) considered in TCDM, without any scene/geometry
information. This will not scale to more complicated settings
(e.g. reaching pre-grasp states in clutter), but those situations
are beyond the scope of this paper.

b) Behavior Learning w/ Pre-Grasps:
Once at a pre-grasp state, PGDM swaps to a policy learning

algorithm, to optimize the original task reward. Specifically,
we utilize the PPO [52] policy-gradient RL algorithm for
policy learning. Our code uses the Stable-Baselines3 [53]
implementation that is built upon the Pytorch [54] deep
learning library. Please check Table. III for the exact RL
hyper-parameters.

C. PGDM Validation Experiment Breakdown
This appendix presents additional context and results from

the full validation experiment that could not fit in the main
paper. Recall (from Sec. V-A) that we deployed our PGDM
framework on all 50 tasks in TCDM using 3 random seeds
per task. Performance by task is broken down in Table IV,
and learning curves are presented in Fig. 8. Additionally,
qualitative examples of the behaviors are shown in Fig. 7.
Note the diversity of our task suite, and how PGDM works
across a wide variety of scenarios, with no fine-tuning and
minimal variance between seeds. For animated visualizations,
please check our website: https://pregrasps.github.io/.

D. Baseline Implementations
This appendix provides added context for the DeepMimic

(see App. D.1), GRAFF⇤ (see App. D.2), and Task Curriculum
(see App. D.3) methods used as baselines in our experiments
(see Sec. V-B). Note that these baselines require added hand
supervision that is only found in the GRAB data-set (see
App. B.2). As a result, our baselines are run on only a subset
of tasks (i.e. TCDM-30).

1) DeepMimic
DeepMimic [33] uses additional rewards to supervise the

hand motion in addition to the object motion. Specifically,
given an expert hand trajectory – H = [h0, . . . , hT ] where hi

is a hand-pose (i.e. joint angles) at step t – and a matching
exemplar object trajectory X (see Sec. III-A), the robot is
trained to match the expert trajectory and exemplar object
trajectory at the same time. This is done with added (in
addition to TCDM-30) reward and termination condition,
�3exp(�⌘||ht � ĥt||2) and ||ht � ĥt||2 > �h respectively,
where ĥt is the achieved robot pose at step t. We set �3 =
1, ⌘ = 15, �h = 0.1, since that gave best performance. Note
that the original DeepMimic implementation used additional
reward terms, which we dropped since they didn’t change
performance in our setting. Additionally, H is calculated
by applying inverse kinematics to the original hand pose
trajectories from GRAB.

2) GRAFF⇤

The original GRAFF [28] baselines predicted contact
affordance regions on objects and encouraged the robot to
interact with them. However, this original implementation
used visual observations, whereas our setup uses robot state
information. To make comparison fair, we extracted ground

truth contact locations on the object from the GRAB dataset.
In other words, we found where the human expert made
contact with the object during MoCap recording, and thus
created an optimal contact pattern for the robot to match. We
then added a reward that incentivizes the robot to move its
fingertips to those contact locations – �exp(�⌘||ct � f̂t||2)
where ct is desired contact at step t and f̂t is robot fingertips.
We found � = 1, ⌘ = 15 gave best performance. This reward
was added on top of the standard (e.g. TCDM-30) reward.
To summarize, we re-implemented GRAFF using state-only
observations, and made the comparison fair by adding expert
(e.g. optimal fingertip location) data.

3) Task Curriculum
The task curriculum is our simplest baseline. We start by

training the robot to only lift the object (i.e. satisfy the lifting
bonus from Sec. III-A). The hope is that the robot will be
able to easily learn the desired behavior (e.g. toast wineglass)
once it knows how to lift the target object. Thus, the object
matching losses are activated over the course of training.
This can be done by linearly blending �1 (see Sec. III-A)
from 0 to 1 over 4 million environment steps. This induces
a curriculum into the TCDM tasks.

E. Real World
This appendix describes our real world verification exper-

iment (see Sec. V-A) in further depth. The goal here is to
demonstrate that actions predicted by PGDM policies can
be deployed on real hardware. We do not consider training
PGDM policies in the real world, nor do we fully transfer
closed-loop control policies from sim to the real world.

a) Task Setup
Our task is to use a D’Manus robot, which is a low-

cost hand from RoBEL suite [29], to lift the Cheez-Itz
cracker-box object from the YCB object suite [22]. A suitable
task automatically defined using our MDP formulation (see
Sec. III-A). Specifically, we use a human animated “object
lifting” exemplar trajectory, which lifts and holds the box
0.2m off the table, to define the task. In addition, we annotate
an appropriate pre-grasp state, with the object positioned
between the D’Manus outstretched fingers and thumb (see
Fig. 5), for the task.

b) Simulated Policy Learning
After defining the task, we created a simulated environment

for it like normal (see App. B.3), and learn a behavior policy
to solve it using PGDM. The learning procedure is almost
exactly the same as our other simulated experiments, except
for the addition of domain randomization. Specifically, at
every environment reset the cracker-box’s width, mass, and
friction are randomized within a pre-specified range. This is
done to make the policy robust across a range of realistic
possibilities, since the physical cracker-box will not perfectly
match its simulated counterpart.

c) Real World Playback
After training the policy, we extract roll-outs from it in

simulation and execute the actions taken in sim on a matching
real world setup. Specifically, our real world setup uses a
tabletop scene, with a YCB cracker-box target object, and

https://pregrasps.github.io/


Water Bottle Shake

Hammer Striking

Stamping

Lifting Duck

Frying Pan Cook 

Fig. 7: Qualitative results of our learned policies on select tasks from TCDM. Note how TCDM contains diverse objects
with behaviors ranging from shaking, to hammering, to lifting. Furthermore, our policies learn natural “human like” actions,
despite never optimizing for them. For animated visualizations please refer to our website: https://pregrasps.github.io/.

a D’Manus robot mounted on a Franka Panda arm (see
Fig. 5). For the D’Manus hand action playback happens in a
straightforward manner: the learned actions are are simply
replayed on the real world hardware using a PD controller.
However, the base joints are modelled in sim using a free-joint
with attached x, y, z, ✓x, ✓y, ✓z degrees of freedom. While this
is suitable for sim, it is not achievable in the real world. To
overcome this issue, we extract a base joint trajectory (e.g. the
commanded base positions over time), convert it into Franka
joint space using inverse kinematics [55], and play those joints
back on the real Franka robot using a PD controller from
Polymetis [56]. The Franka actions are played in real-time
alongside the D’Manus actions, resulting in smooth action
playback for both the base and fingers.

d) Results
As discussed in Sec. V-A, we are able to successfully lift the

cracker-box object using the actions optimized in simulation.
No real world adaptation or fine-tuning was required to make
this possible (videos on our website4). This suggests that our
simulated results are plausible in the real world. In addition,
we demonstrate that the learned actions are not too aggressive
for robot hardware, despite the lack of any additional human
supervision. However, this result does not prove that our
actual policies can be transferred onto hardware. Achieving
real world transfer will require significant engineering outside
the scope of this paper (see Sec. VII).

4https://pregrasps.github.io/

https://pregrasps.github.io/
https://pregrasps.github.io/


Fig. 8: These learning curves show how PGDM’s error and success metrics (averaged across all TCDM tasks) evolve over
RL training. Our experiments were run with three seeds, each plotted separately. Note how PGDM effectively learns the
tasks with low run to run variance.



Task Pre-Grasp Source Trajectory Source Success Error (m)

airplane-fly1 MoCap MoCap [36] 71.7% 6.66e-03
airplane-pass1 MoCap MoCap [36] 60.7% 2.69e-03
alarmclock-lift MoCap MoCap [36] 41.8% 7.39e-03
alarmclock-see1 Learned MoCap [36] 85.7% 1.39e-03
banana-pass1 MoCap MoCap [36] 99.7% 4.11e-04
binoculars-pass1 MoCap MoCap [36] 74.3% 2.35e-03
cup-drink1 MoCap MoCap [36] 97.6% 3.66e-04
cup-pour1 MoCap MoCap [36] 83.1% 8.80e-04
dhand-alarmclock Labeled Animator 84.8% 8.85e-04
dhand-binoculars Labeled Animator 13.7% 3.80e-02
dhand-cup Labeled Animator 85.5% 3.13e-03
dhand-elephant Labeled Animator 10.0% 4.19e-02
dhand-waterbottle Labeled Animator 70.1% 2.48e-03
dmanus-coffeecan Labeled Animator 62.9% 1.46e-03
dmanus-crackerbox Labeled Animator 98.0% 6.28e-04
door-open Tele-Op Expert [23] 92.2% 5.02e-04
duck-inspect1 Learned MoCap [36] 99.3% 3.94e-04
duck-lift MoCap MoCap [36] 97.2% 3.00e-04
elephant-pass1 MoCap MoCap [36] 50.5% 1.58e-02
eyeglasses-pass1 MoCap MoCap [36] 39.4% 1.73e-02
flashlight-lift MoCap MoCap [36] 97.1% 6.53e-04
flashlight-on2 MoCap MoCap [36] 94.9% 5.13e-04
flute-pass1 MoCap MoCap [36] 65.3% 7.71e-03
fryingpan-cook2 MoCap MoCap [36] 98.7% 3.75e-04
hammer-strike Tele-Op Expert [23] 64.0% 2.50e-03
hammer-use1 MoCap MoCap [36] 99.3% 4.11e-04
hand-inspect1 MoCap MoCap [36] 97.1% 1.02e-03
headphones-pass1 MoCap MoCap [36] 55.3% 1.14e-02
knife-chop1 MoCap MoCap [36] 93.4% 7.30e-04
lightbulb-pass1 MoCap MoCap [36] 43.7% 3.13e-02
mouse-lift MoCap MoCap [36] 57.2% 6.39e-03
mouse-use1 MoCap MoCap [36] 21.7% 2.82e-03
mug-drink3 MoCap MoCap [36] 35.4% 1.39e-02
piggybank-use1 MoCap MoCap [36] 1.6% 6.06e-03
scissors-use1 MoCap MoCap [36] 87.4% 8.12e-04
spheremedium-lift MoCap MoCap [36] 100.0% 1.61e-04
spheremedium-relocate Tele-Op Expert [23] 97.3% 3.68e-04
stamp-stamp1 MoCap MoCap [36] 44.9% 1.18e-02
stanfordbunny-inspect1 Learned MoCap [36] 86.2% 2.88e-03
stapler-lift MoCap MoCap [36] 60.8% 5.16e-03
toothbrush-lift MoCap MoCap [36] 100.0% 3.03e-04
toothpaste-lift MoCap MoCap [36] 100.0% 2.80e-04
toruslarge-inspect1 MoCap MoCap [36] 70.7% 5.15e-03
train-play1 MoCap MoCap [36] 99.5% 2.78e-04
watch-lift MoCap MoCap [36] 97.8% 5.99e-04
waterbottle-lift MoCap MoCap [36] 51.2% 1.74e-03
waterbottle-shake1 MoCap MoCap [36] 92.4% 1.03e-03
wineglass-drink1 MoCap MoCap [36] 99.8% 1.82e-04
wineglass-drink2 MoCap MoCap [36] 100.0% 1.94e-04
wineglass-toast1 MoCap MoCap [36] 92.1% 1.04e-03

TABLE IV: This table lists the 50 tasks in TCDM, along with the pre-grasp trajectory sources used to parameterize them. In
addition, we list the success and error metrics at the end of training (achieved by our PGDM method) for each task, averaged
across 3 random seeds.



Algorithm 1 Learning TCDM tasks w/ PGDM

################### INPUTS #######################

# policy: Randomly initialized policy network ($\pi$)

# CEM: Trajectory Planner for reset policy

# PPO: Implementation of PPO algorithm (e.g. SB3)

# goals, pre_grasp: exemplar trajectory and pregrasp

state

################### CONSTANTS #####################

# N_ITERS, N_STEPS: PPO iterations/rollout buf size

# L_1, L_2, A, B, Z: constants for Eqn. (1)

# gamma: termination bound for Eqn. (2)

###################################################

class TCDMEnv(gym.Env)

.....

# reward helper function

def reward_fn(self)

state = self.get_state()

t = state.time

g = self.goal[t]

# calculate error terms

delta_xyz = l2error(state.obj_xyz - g.obj_xyz)

delta_ori = absang(state.obj_ori, g.obj_ori)

# calculate reward with Eqn. (1)

R = L_1 * exp(-A * delta_xyz - B * delta_ori)

if next_s.obj_z > Z and g.obj_z > Z:

R += L_2

return R

# termination helper function

def termination_fn(self):

state = self.get_state()

t = state.time

# terminate if error exceeds threshold

delta_xyz = l2error(state.obj_xyz - g.obj_xyz)

return delta_xyz > gamma

# helper function for rolling out policy

def get_rollouts(policy, n_steps):

# aggregates data from the rollouts

buffer = RolloutBuffer()

while len(buffer) < n_steps:

# reset environment and move robot hand to

pre_grasp

s = env.reset()

reset_policy.moveto(env, pre_grasp)

while True:

# get action from policy and step environment

a = policy.sample(s, g)

next_s, r, done, info = env.step(a)

# append to buffer and advance state

buffer.append(s, a, next_s, R)

s = next_s

# reset episode if done

if done:

break

return buffer

# load task and reset planner

env = TCDMEnv(*)

reset_policy = CEM()

# train policy with simple PPO update loop

env = TCDMEnv(*)

for i in range(N):

eval_and_log(policy)

buffer = get_rollouts(policy, N_STEPS)

PPO.update(policy, buffer)

l2error: euclidean distance; absang: mag. of quat. angle; exp: natural exponent.
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